Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.826
Filtrar
1.
J Org Chem ; 89(8): 5741-5745, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38568052

RESUMO

The skeletal transformations of diterpenoid forskolin were achieved by employing an oxidative rearrangement strategy. A library of 36 forskolin analogues with structural diversity was effectively generated. Computational analysis shows that 12 CTD compounds with unique scaffolds and ring systems were produced during the course of this work.


Assuntos
Diterpenos , Terpenos , Terpenos/química , Colforsina/química , Diterpenos/química , Extratos Vegetais , Estresse Oxidativo
2.
Chin J Nat Med ; 22(4): 356-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658098

RESUMO

A comprehensive chemical study of the endophytic fungus Arthrinium sp. ZS03, associated with Acorus tatarinowii Schott, yielded eleven pimarane diterpenoids (compounds 1-11), including seven novel compounds designated arthrinoids A-G (1-7). The determination of their structures and absolute configurations was achieved through extensive spectroscopic techniques, quantum chemical calculations of electronic circular dichroism (ECD), and single-crystal X-ray diffraction analysis. Furthermore, 7 demonstrated inhibitory activity against Klebsiella pneumoniae, comparable to the reference antibiotic amikacin, with a minimum inhibitory concentration (MIC) of 8 µg·mL-1.


Assuntos
Abietanos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Abietanos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Estrutura Molecular , Ascomicetos/química , Klebsiella pneumoniae/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/química , Cristalografia por Raios X
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542285

RESUMO

Chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actinomycete, Streptomyces griseorubens, resulted in the discovery of five new labdane-type diterpenoids: chlorolabdans A-C (1-3), epoxylabdans A and B (4 and 5), along with one known analog (6). The structures of the new compounds were determined by spectroscopic analysis (HR-ESIMS, 1D, and 2D NMR) and by comparing their experimental data with those in the literature. The new compounds were evaluated for their antimicrobial activity, and 2 displayed significant activity against Gram-positive bacteria, with minimum inhibitory concentration (MIC) values ranging from 4 to 8 µg/mL. Additionally, 1, 2, and 4 were tested for their cytotoxicity against seven blood cancer cell lines by CellTiter-Glo (CTG) assay and six solid cancer cell lines by sulforhodamine B (SRB) assay; 1, 2, and 4 exhibited cytotoxic activities against some blood cancer cell lines, with concentration causing 50% cell growth inhibition (IC50) values ranging from 1.2 to 22.5 µM.


Assuntos
Anti-Infecciosos , Antineoplásicos , Diterpenos , Neoplasias Hematológicas , Neoplasias , Streptomyces , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Diterpenos/química , Neoplasias/tratamento farmacológico
4.
J Chromatogr A ; 1721: 464815, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38522406

RESUMO

Microbial cell factories are an attractive alternative to produce high-value natural products using sustainable processes. However, product recovery is one of the main challenges to reduce production cost and make these technologies economically interesting. In this work, new resins were formulated to 3D print hydrophobic adsorbents for the recovery of biologics from microbial cultivations. Benzyl methacrylate (BEMA) and butyl methacrylate (BUMA) were selected as functional monomers suitable for the adsorption of hydrophobic compounds. Pore morphology was tailored through the inclusion of pore forming agents (porogens) in the resin. Different porogens and porogen concentrations were evaluated resulting in materials with different porous networks. Sudan 1 and the anticancer drug paclitaxel were employed as model compounds to test the adsorption performance of hydrophobic and terpene molecules onto the developed 3D printed materials. The material with greatest adsorption capacity was obtained using BEMA monomer with 40 % (v/v) porogen (BEMA40). The performance of BEMA40 to recover taxadiene from small-scale (5 mL) Saccharomyces cerevisiae cultivations was tested and compared with commercial Diaion HP-20 beads. Taxadiene titres on BEMA40 (46 ± 2 mg/L) and Diaion HP-20 (54 ± 4 mg/L) were comparable, with no taxadiene detected in the cells and cell-free media, suggesting near 100 % taxadiene partition on the adsorbents. Compared to commercial beads, 3D printed adsorbents can be customized with adjustments in the resin formulation, are well adaptable to diverse bioreactor types, do not clog sampling ports and columns and are easier to handle during post processing. The results of this work demonstrate the potential of 3D printing to fabricate hydrophobic interaction adsorbent materials and their application in the recovery of biological products.


Assuntos
Alcenos , Diterpenos , Metacrilatos , Diterpenos/química , Paclitaxel , Terpenos , Saccharomyces cerevisiae/metabolismo , Impressão Tridimensional
5.
Eur J Med Chem ; 270: 116312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552425

RESUMO

Ingenol diterpenoids continue to attract the attention for their extensive biological activity and novel structural features. To further explore this type of compound as anti-tumor agent, 13-oxyingenol dodecanoate (13-OD) was prepared by a standard chemical transformation from an Euphorbia kansui extract, and 29 derivatives were synthesized through parent 13-OD. Their inhibition activities against different types of cancer were screened and some derivatives showed superior anti-non-small cell lung cancer (NSCLC) cells cytotoxic potencies than oxaliplatin. In addition, TMBIM6 was identified as a crucial cellular target of 13-OD using ABPP target angling technique, and subsequently was verified by pull down, siRNA interference, BLI and CETSA assays. With modulating the function of TMBIM6 protein by 13-OD and its derivatives, Ca2+ release function was affected, causing mitochondrial Ca2+ overload, depolarisation of membrane potential. Remarkably, 13-OD, B6, A2, and A10-2 induced mitophagy and ferroptosis. In summary, our results reveal that 13-OD, B6, A2, and A10-2 holds great potential in developing anti-tumor agents for targeting TMBIM6.


Assuntos
Antineoplásicos , Benzenoacetamidas , Carcinoma Pulmonar de Células não Pequenas , Diterpenos , Ferroptose , Neoplasias Pulmonares , Piperidonas , Humanos , Lauratos , Mitofagia , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/metabolismo , Proteínas Reguladoras de Apoptose
6.
Eur J Med Chem ; 269: 116313, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503168

RESUMO

Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.


Assuntos
Diterpenos , Compostos Policíclicos , 60595 , Antibacterianos/farmacologia , Antibacterianos/química , Diterpenos/farmacologia , Diterpenos/química , Compostos Policíclicos/farmacologia , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
7.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542863

RESUMO

From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 5-7 and 9-10 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed.


Assuntos
Alcaloides , Diterpenos , Neoplasias Pulmonares , Salvia , Humanos , Abietanos/farmacologia , Abietanos/química , Salvia/química , Diterpenos/farmacologia , Diterpenos/química , Linhagem Celular Tumoral , Estrutura Molecular
8.
Bioorg Chem ; 145: 107253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452588

RESUMO

Phytochemical study on Euphorbia milii, a common ornamental plant, resulted in the identification of thirteen new ent-rosane diterpenoids (1-13), three new ent-atisane diterpenoids (14-16), and a known ent-rosane (17). Their structures were delineated using spectroscopic data, quantum chemical calculations, and X-ray diffraction experiments. Euphomilone F (1) represented a rare ent-rosane-type diterpenoid with a 5/7/6 skeleton. Euphoainoid G (8) was a rare rosane diterpenic acid. Compounds 9 and 10 carried infrequent tetrahydrofuran rings, and compounds 11-13 was 18-nor-ent-rosane diterpenoids. All isolates were evaluated for their inhibitory effects on RANKL-induced osteoclasts. Notably, compounds with aromatic ester groups (2-7) showed promising activities (IC50 < 10 µM), underscoring the significance of acylated A-ring moieties in the ent-rosane skeleton for anti-osteoclastogenesis. Thirteen synthetic derivatives were obtained through esterification of 17. Of these, compound 27 exhibited remarkable improvement, with an IC50 of 0.8 µM, more than a 12-fold increase in potency compared to the parent compound 17 (IC50 > 10 µM). This work presents a series of new ent-rosane diterpenoids with potential antiosteoporosis agents.


Assuntos
Diterpenos , Euphorbia , Osteogênese , Euphorbia/química , Extratos Vegetais/química , Osteoclastos , Diterpenos/farmacologia , Diterpenos/química , Estrutura Molecular
9.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474596

RESUMO

Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).


Assuntos
Antineoplásicos , Diterpenos , Euphorbia , Triterpenos , Euphorbia/química , Abietanos , Estrutura Molecular , Diterpenos/química , Triterpenos/química , Anti-Inflamatórios
10.
J Agric Food Chem ; 72(11): 5574-5584, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38468388

RESUMO

To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.


Assuntos
Acaricidas , Produtos Biológicos , Diterpenos , Inseticidas , Praguicidas , Animais , Praguicidas/química , Estrutura Molecular , Produtos Biológicos/química , Ésteres/química , Inseticidas/química , Relação Estrutura-Atividade , Acaricidas/química , Diterpenos/farmacologia , Diterpenos/química
11.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396934

RESUMO

The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 µg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , 60595 , Antibacterianos/química , Relação Quantitativa Estrutura-Atividade , Staphylococcus aureus , Diterpenos/química , Compostos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
12.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396965

RESUMO

Lathyrane-type diterpenes have a wide range of biological activities. Among them, euphoboetirane A (1) exerts neurogenesis-promoting activity. In order to increase the structural diversity of this type of lathyrane and explore its potential use in neurodegenerative disorders, the biotransformation of 1 by Streptomyces puniceus BC-5GB.11 has been investigated. The strain BC-5GB.11, isolated from surface sediments collected from the intertidal zone of the inner Bay of Cadiz, was identified as Streptomyces puniceus, as determined by phylogenetic analysis using 16S rRNA gene sequence. Biotransformation of 1 by BC-5GB.11 afforded five products (3-7), all of which were reported here for the first time. The main biotransformation pathways involved regioselective oxidation at non-activated carbons (3-5) and isomerization of the ∆12,13 double bond (6). In addition, a cyclopropane-rearranged compound was found (7). The structures of all compounds were elucidated on the basis of extensive NMR and HRESIMS spectroscopic studies.


Assuntos
Diterpenos , Streptomyces , RNA Ribossômico 16S/genética , Filogenia , Diterpenos/química , Biotransformação
13.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398604

RESUMO

Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.


Assuntos
Andrographis , Diterpenos , Terpenos/metabolismo , Transcriptoma , Andrographis/genética , Andrographis/química , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Diterpenos/química , Lactonas/metabolismo , Antivirais/metabolismo
14.
Chem Biodivers ; 21(4): e202301115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334224

RESUMO

In this study, three diterpenoids (1-3), including one known compound (1), were isolated from the fruits of Vitex rotundifolia and their structures were determined via spectroscopic analysis. In lipopolysaccharide-stimulated RAW264.7 cells, these compounds dose-dependently decreased the intracellular reactive oxygen species levels and nitric oxide production compared to those in the control cells. At 25 µM/mL, these compounds also diminished the protein expression of the pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6, with compound 3 exhibiting the most potent inhibitory effect.


Assuntos
Diterpenos , Vitex , Vitex/química , Antioxidantes/farmacologia , Plantas Tolerantes a Sal/metabolismo , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo
15.
Fitoterapia ; 174: 105854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331050

RESUMO

The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 µM and 3.2 to 45.5 µM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.


Assuntos
Diterpenos , Euphorbia , Fenilpropionatos , Estrutura Molecular , Euphorbia/química , Resistência a Múltiplos Medicamentos , Diterpenos/farmacologia , Diterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP
16.
Phytochemistry ; 221: 114038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395211

RESUMO

Cephalotanes are a rare class of diterpenoids occurring exclusively in Cephalotaxus plants. The intriguing structures and promising biological activities for this unique compound class prompt us to investigate C. fortunei var. alpina and C. sinensis, leading to the isolation of six undescribed cephalotane-type diterpenoids and/or norditerpenoids, ceforloids A-F (1-6). Their structures were elucidated by comprehensive analysis of spectroscopic data, including ECD and single-crystal X-ray diffraction studies, as well as quantum chemical calculations. Compound 1 possesses an unprecedented norditerpenoid skeleton featuring an unusual acetophenone moiety, and originated putatively from a disparate biogenetic pathway. Compounds 4 and 5 incorporate a unique 12,13-p-hydroxybenzylidene acetal motif. Compound 6 is a rare cephalotane-type diterpenoid glycoside. Immunosuppressive assays showed that compounds 2 and 6 exhibited mild suppressive activity against the activated T and B lymphocytes proliferation. These findings not only expanded the structural diversity of this small group of diterpenoids, but also explored their potential as novel structures for the development of immunosuppressive agents.


Assuntos
Cephalotaxus , Diterpenos , Estrutura Molecular , Cephalotaxus/química , Diterpenos/farmacologia , Diterpenos/química , Imunossupressores , Cristalografia por Raios X
17.
Phytochemistry ; 221: 114043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417720

RESUMO

Chemical investigation of Euphorbia wallichii Hook. f. led to the isolation of four undescribed rearranged diterpenoids, euphwanoids I-IV (1-4), and six unreported tigliane diterpenoids walliglianes A-F (5-10). Euphwanoids I-III (1-3) possess a rare 6/6/7/3 ring scaffold, euphwanoid IV (4) is the first spiro[tricyclo[5.4.0.02,4]undecane-8,1'-cyclopentane] skeleton to be found in the tigliane family. The structures of compounds 1-10 were established by utilizing spectroscopic data analysis, experimental electronic circular dichroism measurements, 13C NMR calculations, and single-crystal X-ray diffraction. In the preliminary bioassay, compounds 3, 4, and 7 were found to protect BV-2 cells against H2O2-induced cell injury in a dose-dependent manner by the CCK8 assay.


Assuntos
Diterpenos , Euphorbia , Forbóis , Euphorbia/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Diterpenos/farmacologia , Diterpenos/química
18.
Bioorg Chem ; 145: 107208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354501

RESUMO

Hepatocellular carcinoma (HCC) is a major challenge for human healthy. Daphnane-type diterpenes have attracted increasingly attention due to remarkable pharmaceutical potential including anti-HCC activity. To further develop this class of compounds as inhibitors of HCC, the daphnane diterpenoids 12-O-debenzoyl-Yuanhuacine (YHC) and 12-hydroxydaphnetoxin (YHE) were prepared by a standard chemical transformation from dried flower buds of the Daphne genkwa plant. Subsequently, 22 daphnane diterpenoidal 1,3,4-oxdiazole derivatives were rationally designed and synthesized based on YHC and YHE. The assessment of the target compound's anti-hepatocellular carcinoma activity revealed that YHC1 exhibited comparable activity to sorafenib in the Hep3B cell line, while demonstrating higher selectivity. The mechanistic investigation demonstrates that compound YHC1 induces cell cycle arrest at the G0/G1 phase, cellular senescence, apoptosis, and elevates cellular reactive oxygen species levels. Moreover, molecular docking and CETSA results confirm the interaction between YHC1 and YAP1 as well as TEAD1. Co-IP experiments further validated that YHC1 can effectively inhibit the binding of YAP1 and TEAD1. In conclusion, YHC1 selectively targets YAP1 and TEAD1, exhibiting its anti-hepatocellular carcinoma effects through the inhibition of their interaction.


Assuntos
Carcinoma Hepatocelular , Daphne , Diterpenos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Daphne/química , Diterpenos/farmacologia , Diterpenos/química , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia
19.
Metab Eng ; 82: 193-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387676

RESUMO

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.


Assuntos
Produtos Biológicos , Diterpenos , Saccharomyces cerevisiae/genética , Diterpenos/química , Sistema Enzimático do Citocromo P-450/genética
20.
Phytochemistry ; 220: 113992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301947

RESUMO

Seven undescribed neovibsane-type diterpenoids (1-7) were isolated from the leaves of Viburnum odoratissimum. Their planar structures and relative configurations were elucidated based on a combination of 1D and 2D NMR analysis. The absolute configurations were confirmed by Rh2(OCOCF3)4-induced ECD analysis and comparison of experimental and TDDFT-calculated ECD spectrum. Based on the empirical results of the ECD of in situ formed Rh-complexes, rapid determination of the absolute configuration of C-14 within vibsane-type diterpenoids was proposed. In addition, 3 exhibited a high neuroblastoma cell protective effect of 81.8 % at 50 µM (the control group showed a neuroblastoma cell protective effect of 56.2 % at 50 µM).


Assuntos
Diterpenos , Neuroblastoma , Viburnum , Viburnum/química , Estrutura Molecular , Diterpenos/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA